PATH-121

Definations: \rightarrow
Plant Pathology: \rightarrow
It is the branch of biology which deals with the study of diseases, etiology epidemiology, resulting losses and manageme

Objectives of Plant Pathology:
i) The study of living, non-living and environmental cause of disease or disorders of the plants.
ii) To study the mechanism of plant disease developement.
iii) To study interaction between host/susceptik and the pathogen.
10) To derelope systems of management of plant diseases and reducing losses caused by them.

* Importance of Plant diseases or Plant Pathology.

1) losses they cause.
ii) About 34% of the crop produce is lost annually due to diseases insect pests and weeds. On the global basis <cramer 1967〉; out of which 12% is lost due to diseases <caused by fungi, bacteria or viruses $>, 11 \%$ due to nematodes 7% due to insect pest and 8% due to weeds.

Epidemics
i) Late blight of potato caused by Prhytophetiona infestans wa's responsible for causing Irish famine in 1845 by destroying the potato crop, the sample food of the people.
ii) This single disease forced man to realize the importance of plant diseases and brought the scierice of plant: Pathology to lime light.

Other famines
i) Wheat rust epidemics occured from time to time in many countries - Wheat rusts forced Farmers to change their coping pattern and wheat replaced by corn or maize or rye.
ii) Brown spot of rice caused by Helminthosporiam oryzeare cols responcible for Bengal Famine in 1943.
iii) Powdery midilew of grapevines caused by Hemileig vastratrix I
iii) Coffee rust caused by Hemileia vastater x forced to cut down the coffee plants in Sit lanka in 186%.
8) Losses in India: \rightarrow

1) Wheat rust causes loss of RS 400 crore annually.
n) In the years of epidemics losses fare Rs 5000 crore or moses.

Effect on society:

1) Infected grains of the fecit's may contain toxins (such as aflatoxin, fumono sin) which cause insanity paralysis stomach disorder and liver cancer.
ii) The money spent on the management of plant disease is also a loss because in the absence of diseases this's money could be saved.

Classification of plant disease.

* Based on plant part affected.

1) Localised. \rightarrow if they affected only specific organ or port of the plant.
2) Systemic : \rightarrow if entire plant is affected or

They can be classified ass root idiseases. stem diseases i Foliage Folie diseases etc.

* Based on prepetution and spread \rightarrow.
i) soil borne: when the pathogen perpetuates through the agen of of soil.

2) Seed borne: When the pathogen perpetuates \therefore tHrough seed <or any propagation materiel
3) Ais borne: when they are disseminated by wind e.g-rusts and powdery - mildews.

* Based on the signs and symptoms produced by the pathogens.
- Disease are classified as rust, smuts, powdery mildews, downey mildews root boots wilts, blights cankers, fewits rots, leaf spots, etc. In all these examples, the disease are named after the most conspicuous symptom of the disease appearing on the host surface.
* Based on the host plants affected. They can be classified as cereal orop diseases. - Forage crop diseases, Flax diseases, millet diseases, plantation crop diseases, Fruit crop diseases, vegetable crop disease, Flowering plant diseases etc.
* Based on major causes:-

They can be.classiffed as fungal disease, viral disease, mycopiasmal diseases etc.

Based on Infection Process.

1) Infectious: All the diseases caused by animate. causes, viruses and virolids can be transmitted from infected host plants to the healthy plants and are called infectious.:
2) Non-infectious: Non-infectiars disease cannot be transmitted to a heal thy plant. Also reffered as non-parasitic disorder on
simply physiological disorder and ane incilo by abiotic or inanimate causes like nutrient n difficiency or excess on unfavourable weathers conditions of soil and ais or injurious mechanical influence,

* Classification of Animate disease in relation. to their occurance.

1) Endemic diseases: which are moke or less constantly present from year to years in a moderate to severe form in a perticulas geographiofegion ie country, district or location.
2) Epidemic/epiphytotic disease: which occurs widely but periodically particularly in a severe Form. They might be beccuging is a toe ally locality every year but assume severe form only on ofcassion due to the Favourable environmental cond n accusing in some recurs.
3) sporadic disease: occure at irregular intervals and location 8 and in relatively fa: instances:
4) Pandemic diseases: A disease may be endemic in pone region and epidemic in another, when epiphytorics become peevalent through a्य a coney continent or the word te diseanfents many be teamed as pandemic.

Short note -4 m .

* Phanarogemic Parosite: \rightarrow

Phanaeogaming pasasite is atso called as
flowering parasite.
Phanenogamic Parasites

Sriga densiflora-8N-of sfifga.
sorghum-main host.
Qeobanche cerela-BN-of olabanche
main host \rightarrow Tobacco and also, cabbage, coliffower.
Loranthus \rightarrow BN \rightarrow Dentrocata falcata.
host onop-Mango
cascuta:- nost \rightarrow Tomato.
$\frac{\text { steiga }}{\text { straga spaga }}$
(firum in asia)
\qquad
(external) Symptoms $: \rightarrow$
symptoms ane external expression for the evidence of abnormalities in the appearance of diseased plant bright abort by pathogen after host and pathogenic infraction called as symptoms.
internal \rightarrow sign: \rightarrow when the pathogen itself become visible on the host surface in the form of it's organ or structure B called as sign.
'Syndrome: A total sum of valery of a symptoms produced by/disease

$$
\text { syndrome }=\operatorname{sing}+\text { symptoms. }
$$

Flowering Parasitic plants.

* Root Parasites *.
(Q1) Striga. (whichwerd).
i) stria is an obligate root hemiparasite, although the 'seedlings above ground do form chlorop byll..
ii) It attacks important crops like maize, sorghum, pearlmillet, rice, sugarcane and legumes (cowpea, groundnut etc).
iii) Two species, S. asiatica \&

6. hermonthica pauses maximum damage to crops.
iv) Striga has complex life cycle. It produces tHousands of dust.' seeds that one disseminated by wind and sain.
v) The seeds after a dormant 'ripening' period of several months respond to chemical signals excluded by the host.
vi) The chemical signals enable the striga seeds to defect the type of host and it's distionce from the host.
vii) The radical produces root hajes like structures that glue it to the host.:
viii) Once the parasite established the distinctive seedling. of striga 13 formed. underground, which lacks. chlorophyll II; possesses sc ale -like leaves and produces abundant adventitious coots that form additional haustoria; establishing more connections with the host..
the roots of infected host and bear beautiful Flowers , besides bracket like leques lacking chrolorophyl.).
iii) In general, orobanche is a parasite of colder climate and need 10-2000 of temperature fo seed germination.
10) This is the reason why it attacks tobacco during winter ib India but fails to infect sunflower during summer in the same field.
v) It's control is difficult due to the high longevity (more that 5 decades. of the seeds in the soil their extremely small size. (less than the thickness of human a hair, their production in extrem ely large number and subterranean infection.

* characteristics of Flowering Parasitic plants.
i) The pathogenic Flowering plants, also called parasitic angiosperms can be classified as root parasites or stem parasites.
ii) Root parasites < witcheseed and broom rape) are more common and more diverse taxonomically.
iii) Stem: parasites include the dodder <cuscuta) and mistletoes 〈Arceuthobium〉.
(v) The angiospermic parasite 's can be..also classified as holoparasite <total parasites) or. the hemiparasites <semiparasites).
N) The holoparasites lack chlorophyll and are totally dependent on the host for
vi) nutrition: Thus they are obligate 'parasites.
vi) The hemiparasites contain chlosophy 11 and make their own food, and absorb water photosynthesis is negligible and the parasite draws nutrition from the host Practically, it is an obligate parasite.

Phanagoganic Parasites.

*. STEM PARASITE *

1) Cuscuta <dodder.
i) It is obligate stem holoparasite and is among the best known of all parasitic plants
ii) Dodders are the most important parasites in legumes.
iii) It caused considerable damage to alfalfa, flax, sugarb,eet onion and other crops besides fruit, fodder, and Forest Frees and shrubs. It also transmit viruses.
iv) The most effective. means of control is seed sanitation. Several herbicides are effective on c peidly-germinated seeds.
2) Mishetoes.
i) Mistletoe are stem holopcrasites occuring in three families of the fodder "santalales" as follows.
Family Loranthaceae: shoroy mistletoes [Loranthus (Dendraphthoe)].
Family santalceae: sandalwood (Pyrularia, tantalum).
Family viscaceae: Dwarf mistletoe (Arcauthobium) leafy mistle toes (viscum).
ii) The seeds are covered with a sticky substance, called viscin' that glues the seeds to the host sworface.
3) Asceuthobium (Dwarf misteloetoes).
i) Arceuthobium is the most important m/ ste toes in item of economic 10 sses , especially to the coniferous trees belonging to families pinacene and cupressucceqe.
ii) The flowers are small and unisexual present onsame (monoecious) plant or on different dioecious plants.
iii) Pollination is brought about by insects and wind. ..
iv) The seed which are discharged: exposively from the part at the rate of 27 metres per second, reach up to 16^{\prime} metres.
v) The seed sticks to the surface by the viscin coating:
vi) The radicle forms a hold fast from which the haustorium emerges and penetrates the host tissue.
vii) This trig life cycle is prof it idly us esd in disease management:
viii) chemical control has also been successful with ethephon, an environmentally safe chemical.
4) Mottling: Partial destruction of chlorophyll in intorveinal area.
5) Stem galls: The galls are produced due to infection of the fungal pathogens, egg. white rust. of crucifers, loranthus on mango.
6) Club roots: The malformation of roots into finger like or toe like structure due to infection of the fungal pathogen egg. club roots of cabbage.
7) Blight: There is a general and rapid destruction of plant parts like shoots leaves bloosmos twigs etc: The dead organ two b brown to black showing burnt appearance, egg. early and late blights of potato, bocterial blight of paddy etc.
8) Spot: It is localised destruction. of the tissue in a more or less circular manner. It is usually found on the leaves, and may developer on stem or fecit. The dead tissue which are in limited area give shapes as angular enwind or circular surrounded by yellow purple red margin eg. eye spot of jounar, tikka of groundnut, angwas leaf spot of cottonetc.
9) Tar spots and streaks or stripes:

Necrotic are become typically to. stained found in forest trees, pain. grasses and jowor: Streaks are - elongation of necrosis. eg bacteria streak of paddy and jowar.
7) Blast: same as blight but spots are distinct and spindle shaped.ég. blast of paddy.
8) Die back: Dying of plant organ especially stem and branches from the tip downward e.g. die back of citrus.
9) Exqdation: secreation of sticky gum like substance due to disease eg. gummosis of citrus.
10) Anthracnose: Disleuction of collenchyma and cambium tissue, lesions are supkenin the centre with raised and prominent margin eg. anthracnose of grape, chilli bean etc.

1) Black react $s \rightarrow$. Blackening of ..central portion observed in potato due to high temperature and porn neg ntillation In storage eq. black heart of potato.
2) Scab: Destruction of epidermal tissue in the form of scab. Infection is deep seated eg. scab of potato and apple
3) SHot hole: Decayed leaf tissues ane blown away leaving holes of perforations. eg shot hole of ashok and mango.
4) Smuts: The floral parts rusually the ovaries are destroyed and replaced by forming sori. eg. smuts of jowar, loose smut of wheat etc.
5) Rusts: The pustules of spore usually breaking through the epidermis ace seen on the host. Postures: \varnothing may be either dusty or
\therefore compact and white, yellow red os black in esther eg. White rust of chuci fers leaf and stem rust of wheat s
6) Ergot : Normal grains ore replaced by sclerotic. egg. ergot of bojara, jorwar etc.
7) Green EAR (Downy Mildew):

Flower's are converted in to green and etongated diseased structures eg green ear of bajara jowar etc.
18) Powdery mildew: Powdery graroth consisting of mycelium and numerals conidia. is seen on the host surface iq. powdery milder of pea.
19) Mummification: These are observed in fruits. The skit of the faults becomes hard fruits get shrivelled. Such fruits are called as mummified frul'ts.eg. drone) mildew of grape.
20) Wilts: Wilting or drying of entire plant observed in adult plants. The leaves and other succulent poets. loose turgidity become flaccid and droop. It is typical vascular symptom due to plugging of xylem vessels or toxic effect. eg. wilt of ter, cotton pele gram etc.
21) Damping off: Sudden wilting and collapse of seedling observed commonly in seed beds. The stem near the soil is affected, becoming con strickled and weak: gg . damping off seedlings like tobacco, tomato, cabbage chilli etc.
.22) Pallor: Partial destructruction of chlorophyll in the form of streaks. There is up-healthy appearance of the plant due to
difficiency or excess of water or lack of light or reduction in chlorophyll content due to pathogenic organisms. eg. bajara seedling affected with downy mildew.
23) Rots: predial destruction of chlorophyll) in the form of streaks. There is un-bealthy appearance of the plant due to difficiency or excess of water or lack of light or: reduction in chlorophyll content due to pathogenic organisms eg. bajara seedlings affected with drone mildew.
23) Rots: The term is applied in cases where affected tissues decay so not. Infection of parenchyin a, pith tissue and various parts.
\& Rot imports differternt colour reactions and are designated accordingly.
a) Dry rot: Decay of tissue, even after rotting may sometimes remain firm or hard. eg. dry sot of potato and corn.
b) Softrot: Decay of soft tissues, rotting accompained by softening of the tissues. eg. soft ot of lemon, mango, tomato banana etc.
c) Red rot: Affected tissue becomes red in eulowr eg. ned sot of sugarcane.
d) Wet rot: In addition to softening, there is slimy oozing of liquid, eg. storage rot in potato citrus and other fruits, usually due to finger.
e) Root rot: Destruction of parenchyma of undergeorind stems. eg. Rhizoctoria roots not of cotton, ballon stem of Jowar. Roots may be described sometimes according to plant port affected eg stem rot. (papaya), collop rot (groundnut), beck rot (paddy), enizome rot (ginger). They ore also described after the diseolo duration produced on infection eg. prow rot (Potato) and black est (cabbage), red sot (sugarcane/) etc.
24) Canker $: \rightarrow$ Deep s elated infection due to destrib destruction of, woody tissue and cambium tissues cankers are edilsed

- from epidermal swriface tissue and a ne rough to touch eg. guava canker etc:

Symptoms of Cant Diseases Produced by Bacterial Plant Partggena.

1. Fumes (Galls: \rightarrow

Tumors' are knot like structures of even zeroth of the hast tissue. It is bigger in size eg. tums caused by the infestation of bacteria like Agroxaclerium, eudiobachez. Gas are abnormal swelling or blisters a pimples/ knot formed on plant ports. The bocleria includes formation of galls in plants by simulating makes cells to resume mezistematic growth. Galls are smaller sn size than tumors.
2) Haley Root $:$

Formation of numerous fine cots eg.
infestation of Agrabaciesium, rodiobacter var enizogenes.
d) Wilts $: \longrightarrow$

Wilting of drying of entice plant observed in adult plants. The leaves and other succulent ports loose turgidity, become flaccid and droop. It is typical vascular symptom due to plugging of xylem ressels of toxic effect eg. bockeral wilt of tomato.
4) Blight: \rightarrow

There is a general and rapid destruction of plant parts like shoots, leaves, bloosms twig etc the dead ran turn as browns to black showing burnt appearance, e.g. bacterial blight of paddy-
5) Soft Rot \longrightarrow

The term is applied in cases where affected tissue decay of not: Infection of parenchyma pith tissue and various parts Rot imparts different cottier reactions and are designated accordingly eg. brown rot (Potato) / soft black rot (cabbage) etc.
6) Can cheri \longrightarrow

Deep seated infection due to desliuction of woody tissue and cambium tissues. cankers are raised from epidermal surface of the tissue and ore es enough to touch, eg. ritrus canker tomato. Fecit cancer etc.

* Symptoms of plant disease produced by viral \& Phytuplasmal plant Pathogens
(18) Symptoms of vie al plant pathogens.
I) Colour change in leaves.:

1 Chlorosis: \longrightarrow
It is known as yellowing. There is complete destruction of chlorophyll when the colin becomes white it is know o as etiolation. These. symptoms usually caused by viruses eg yellowing of beans.
2. Vein clearning/banding: \rightarrow
clearing of veins ie they turn yellow and leaf lamina remaining green, eg yellow vein mosaic of bhendi and hibiscus.
8. Flecks: clearing of veins further twit in to transcalent appearance, eg. tristeza v) bus in kag.zi lime.
4) Mosaic : \rightarrow

Mosaic caused by virus infection ore highly infections. It is due to portia loss of chlorophyll or chlorosis in uneven patches. eg papaya mosaic, tomato mosaic, chili mosaic etc.
a) Yellow mosaic: $:$

Light green and yellow patches are observing in the leaf lamina. eg yellow mosaic of beans.
b) Streak:

Induction of the streaking on the infected portion mainly on the leaves eg maize streak.
d) Mottling: Portia destruction of chlorophyll in interveinal oread eng mottle leaf of citrus.
5) Rig spots:

The formation of the characteristic chloroptic a necrotic sings on the leaves sometimes on Pewit and sem egg. papaya eng spot
disease.
6) Oak leaf pattern: Yellow concentric lines extending avon main reins eg. potato are aucuba mosaic virus:
7. Browning of leaf from tip downward: eg rice tungro virus.

Teacher's Signature
I) Apron Abnormalities of leaf shape.

1) Enation and tumors:

Dork green tums like outgrowth appears on the upper or lower scroface of leaves cenation) mosaic.
2) Leaf cher): Leaves curl upward or downward. eg. leaf curl of chilli, tobacco, papaya, bringal, tomato etc.
3) Leaf sell: Leāves roll upward or downward, plants remain stunted and have stiff upright growth, eg spotato leaf roll etc.
4) Fern leaf and shoe string effect:
leaf farina between reins is poorly developed or not developed at all eg CMU on tomato etc.
5) Cupping of leaves: eg. papaya mos aic, cow pea mosaic etc.
6) Twisting and blistering of leaves:

Uneven growth of. leaf lamina eg. TMV, CMC in tomato etc.
II) ABNORMALITIES IN LEAF SIZE:

Reduction in leaf size eg CMV ontomato.
IV) Necrosis:

Scattered flecks of patches of dead tissues appear on infected tissue of leaves, stem. fruits eg. tomato spotted wilt virus ipotent x and y etc..
v) ABnormalities in structure and shape of plant
i) stunting/ dwarfing (Bushy appearance): Reduction in size of leaves, flowers, fruits shortening of intarnodes and height which. results into stunded growth of plant. eq bunchy top of banana pegstunt etc.
ii) Hairy root and spindle tuber: The formation of spindle tuber of tomato due to infestation of potato spindle tuber virus.
iii) Swollen shoot:
virus bed inducing the swollen shoot and branches, eg. cocco swollen shoot.

V1) Symptoms on Bark and stem:

1) $\frac{\text { bask scaling ing. citrus spsorosis. }}{\text { sit }}$
2) crackling of bask eg. citrus exceostis.
3) Stem pitting : Pitting and gedoing of the stem, eg. citrus tristeza.
(11) Symptoms on Flowers:

Colone breaking <petal or Flower break) \rightarrow Colour break symptoms which induces varigation in the colour of flower eeg. tulip flower mosalcipea mosaic.
VIII) Symptoms on Fegits:
i) Mottling of fests $=$ eg. Mv in cucumber.
ii) Watersoaked rings: eg. papaya mosaic.
iii) sunblotch of fiults: eg. citrus greening in mosambi.
(6) Symptoms of phytoplasmal plant Pathogens

1) 2) phyllody

The symptoms marked by vein clearing stimulation of the axillary buds and transformation of the flower ports into leafy structure termed as phyllody eg. sesamum pryllody.
2) Grassy shoot: Excessive tillezing at the base of infected plants and grassy transformation of the growth eg grassy shoot in sugarcane.
8) Greening: Marked by yellowing of the midrib. and lateral veins of mature leaves veins banding distoration of leaves and blotching on the Pewits eg. citrus greening.
4) Lithe leaf: Extreme reduction in the size of the leaves and leaves become sessile, thin, soft glabrous and pale green egg. lithe leaf of beingal.
5) Sandle spike:

The symptoms are mocked by ser ere reduction of leaf size and shorting of the internodes as a result leaves become stiff and crowded giving spiked
appearance. eg. sandle spike.
6) Stunting and dwarfing (Bushy appearance):

Reduction in the plant size, leaf lamina, node and internodes because of the infection of the proytoplasmal plant pathogen eg. rice and barley yellow dwarf. In ouse of rice yellows disease induced by the phytoplasma shows profuse tillerning and pronounced styling occures.

Jectuee : \rightarrow

* Nomenclature: Binomial system of nomenclature, Rules of Nomendatuse.

Definations:
Taxonomy \rightarrow
Taxonomy is a a science that deals with the identification nomenclature

- (naming) and dassification (systematic arrangement) of organisms.

Nomen apure:
It is the system of assigning names to the taxonomic groups/ organisms according to internation af rules.
systematics.
It is scientific study of organisms with the whimate object of characterizing and arranging therm in an orderly manner.

By ar Binomial system of nomenclature Was developed by carious vo linnaeus (1907-1778) which now universally used.
In this
the first word indicating the name of genus in which and second word indicates the name of species.

Rules of Nomenclature,
following rules should be obsorved while righting of binomial.

* 1. The mame of the genus should always be capqtalized.
* 2. Species name shawl not be capitalized.
* 3. Binomial when written should alciays be underlined separately; when printed italicized-
* 4. The name or abbreviated nome of the scientist describing the species for th first time should be weition offers binomial e.g. Pseudomonas single val Hall.
* 5 . If the name 18 revised, the name of the original describer should be written in the bracket followed by the name of the revising scientist eg. xanthomonas compestrips Pr Osyzae Ishiyanl'a) Dye.
* 6. To avoid confusion the same binomial should not be used to name two different species.
* 7. The year in which organism was described should be written offer the name of the author / scientist.

Principle of Plant Disease Management.

1) Exclusion
2) Eradication.
3) Avoidance
4) Protection.
5) Immunization.
6) Theornpy.
A) Exclusion

The principle of exclusion applies to 1 management of pathogen. The aim to prevent the eniry of n pathogen in a field area.

1) Quarantine:
i) Plant quarantine aims at preventing entry of pathogens from/infested areas into non-infested areas at miernational ar national level.
ii) If in a perticu/ar area some disease is present in serious $/$ form and is likely to be desseminaled by propagating malesials. the got passes necessary regulations to stop the entry of such material from infested area. for implementation of these regulation at international level proper check is maintained at the point of en fry such as carport.
iii) This is called as quarantine. Suspected maternal is kept under quarantine for a specific period and if found contaminated it 15 elesproyed or effectively treated.
2) Inspection and certification: \rightarrow
i) The crops grown exclusively for seed are periodically inspected for presence of disease Necessary precaution 5 are taken to remove the diseased plants. The produce is then certified as seed.
3) Seed Treatment:-
4) Seed tubers grafts, bulbs and other propagative materials cab be given beat gas on chemical reatment to n exclude the pathogen present in on on them.
iii) The method is used for exclusion by eradiction.
iii) seed treatment reduce loss in germination and developing of the disease in the field.
5) Eradication of Insect Vectors:
i) For effective exclusion of pathogens that can gam emmy into a new area through insect vectors or carriers iperticularly insects having long flight range, acheck on these vectors is necessary.
ii) Since the fight of insects cannot be checked the crop should be given insecticidal cover before
\square
arrival of the vector on the plant slerface.
B) Avoidance of the Pathogen: \rightarrow.

The principle of avoidance involves tacks that prevent contact between theno'sts the pathogen. Avoidance is not applicable to disease in which host 13 in a suspceptible stage for a long time.

1) Chow of Geographic Area:
i) selection of geograp $H_{1} c$ area for any crop is made on (-ri basis of suitability of dimate for the crop.
eg. Bean anthracnose is common in wet when e seeds a produced come generally infected for seed production of bean dry dry area are always preffred.
2) Selection of field:
i) Successful cultivation of crop depends, to a great extent, on selection of proper field. If the disease caused by a soil bore pathogen has been located in the field is not put to the same ono for some time.
3) Chojse of time of Planting: \rightarrow

In many diseases incidence on disease severity is most serious when the susceptible stage of the plant growth coincide
with the fquourable condn of pathogen. It helps in avoiding the critical pernod.
4) Disease Escaping varieties:
i) In diff crops, i certain varieties escape the damage by disease because of their growth character not due to their genetic constitution or resistance to the disease. eg groundnut vorieties with erect habit suffers less from damage by leafy spots..
5) Selection of seed and planting material: \rightarrow planting of disease -free in seed in pathogen-fee. soil is often the most effective method of control of certain disease.
c) ERadication of the Pathogen $: \rightarrow$ It aims at removal of the moculem already present the field or the crop. Total eradication being not possible the aims is to reduce the inocul um density to a level where cannot cause significant damage.
1 Biological control of Pathogen:

1) The biological control aims at eradication ane red n of incolum and protection of plant surface through the activity of rather mione-organisms.
ii) The antagonistic component of the myomolay population may have biostatic or bioadal effect against the pathogen.
2) Crop rotation d \rightarrow
i) crop rotation is one of the oldest method of Fighting soil sickness and rot diseases. The method is more effective against pathogens which have limited host range and restricted soovival abilility in soil.
3) Rensoval and destruction of diseased Plants or plant organs:
The practice involve the removal of diseased plants or their affected organs from the field. The disease plantar portion is a continuous sourer of released of inoculum. Therefore they are destroyed to reduce the amount of inodium. It includes \rightarrow * Roughing

* Eradicate of alternate and collateral hosts.
* sanitation.
a) Roughing s \rightarrow This practice involves the removal of
diseased plants or the i affected organs from the field.
Roughing is em played in such disease as loose smut of wheat, loose and covered sm.
in barley. red rot of sugarcane and wilt diseaseser
\qquad
b) Eradication of Alternate and collates at hosts: \rightarrow 1) The peimary inoculum is produced on and dispersed from the alternate or collateral host.
ii) If these wild of un economic host of pathogen $^{\circ}$ are destroyed the source of primary inoculum is eliminated and chance of initiation of disease in crop are reduced.
iii) It is applicable in diseases course by fungi, bacteria viruses as well as nematodes.
c) Sanitation: \rightarrow
i) Field sanitation is essential for control of sol borne and facultative or parasites or saprophytes
ii) Destruction of crop denies by burning in the field decreases type of survival of pathogen m the field.
iii) Burying of crop gebrites phenghigur deep in the soil by soil therning ploughs also inactivates inoculum of many pathogens.
iii) Santitation is very important when diseased crop residue is left on the field as a general practice by the farmers.

4) Heat and chemical Treatment of diseased pin.
(1) The pathogen present in the plant or in it's special organs can be inactivated arkilled by heat or chemical treatments.
ii) Heat therapy inactivates viruses in Fruit tee seedling and grafts and destroys the exposed fungal and bacterial progpagules
iii) Bare root dip in nematocides or Fungicides is a method of sanitizing the seeding befree transplanting.
5) Soil Treatment i $\quad \rightarrow$
i) The aim of soil treatment is to ingetivate on eradicate the pathogens present in die sort.
ii) It involves the use of chempals and beat and cultural practices such as flooding and fallowing.
iii) Inchemical reatment of sol) fungicides and fumigant of granular nematicides are generally used.
io) The fungicidal dust can be used at the time of planting of crop.
v) For small quantities of sollor for small polots heat treatment is an efficient method of eradication of pathogens.
6) Heat and chemical Treatment of diseased pin
\rightarrow i) The pathogen present in the plant $\sigma \sigma$ in it's special organs can be inactivated os killed by heat or chemical treatments.
ii) Heat therapy inactivates viruses in Fruit tHee seedling and grafts and destroys the exposed Fungal and bacterial progpagules
iii) Bare root dip in nematocides or fungicides is a method of sanitizing the seeding before transplanting.
7) Soil Treatment: \because
i) The aim of soil treatment is to ingetivate or eradicate the pathogens present in die 50%.
ii) It involves the use of chemicals and beat and cultural practices such as flooding and fallowing.
iii) Inchemical reatment of sol fungicides and fumigant or granular nematiciles are generally used.
io the fungicidal dust can be used at the time of planting of crop.
v) For small quantities of soil or for small polots heat treatment is an efficient method of eradication of pathogens.
(1) d) Protection.

Principles of exclusion quoidance s eradication are generally mefficient or not sufficient to prevent the developement of such disease. so the plants are provided some protective cover and dusts to face the pathogens.
a) Chemical Treatment $: \rightarrow$

The am of most chemical sprays dust and seed treatment to form a protective layer on the host surface so that when the pathogen comes incontact with the surface it is killed of prevented from growth.
b) Control of Insect vectors: \rightarrow

1) insects are important vectors of virual and other disease The slices of chemical control depends on speed on acton, nature of pathogen and crop stage.
C) Modification of the environments:
i) Improvement of aeration under crop canopy reduce humidity on leaves and other aerial ports and thereby checks georath of fungi which flourish in humid atmosphere.
(i) Aeration through proper ventilation of the store house provides proper enuronment of for storage of plant products especially those with syce wont tissue.
\qquad
d) Modificarn of hog nutrition:
2) lost nutation often influences dorelapes. of a disease in the plant. It gerarolly acts through strongining of the trove.
ii) Intensity of several diseases is gereoses by such micronutients as zine, boron, mangnease etc.
E) Immunization.
a) Selection and Hybridization: \rightarrow
selection of resistant individual win for commercial qualities and hybeldizing thomwit. susceptible plants of high commercial qualities is the aim of developing sesistane trough hybridization.
b) genetic manipulation through biotechnology: \rightarrow
i) Manipulation, genetic modification and multiplication of plants through such lechnouse as tissue culture and gohetc engineering is now used in many crops.
ii) The perticulan plant species or in which resistance gene of the pathogen are introduces to import resistance is now possible.
c) Induct of squired Resistance:
3) The plant aquine localize a systemic resistance dung its life time therigh the effects of chemical or mirroogigantsm.

The ehrobacteria also know to induce systemic aquired resistance in die foliar ports against many- disease simultaneously.
a) Resistance through chemotherapy: \rightarrow
physiological resistance in plants can be developed through chemotherapy.
e) Resistance through host nutrition:

Making available major and nojeronutejents through foliar sprays seed treatment or sol treatment or soil application is reported to strengthen the tissue that can ward off invasion by the pathogen.
P) Therapy of diseased plat $: \rightarrow$
a) chemotb erapy: \rightarrow y chemical treatment applied to eradicate the pathogen from tissue of the diseased plant and thus curing it are included in chemotherapy.
b) Heat or Thermotherapy: \rightarrow
plant which can tolercule the thermal inactivation or death point of the pathogen can be treated by heat to destroy the pathogen.
c) Tree surgery: \rightarrow
large size trait trees are cleaned of infection by cutting or scrapping of the discussed port and covering the wound with, I fungicidal Teachers sisneatre

Lect: \rightarrow Management of plant disease management.

* Methods of plant disease management.
A) Cultural Method:

1) Roughing: Roughing is the management of diseased plants. Regular zemoval of diseased plants from population is an important sanitary precaution and is effective against virus disease of crop.
Red rot of sugarcane, wilt of pigeonpea s cotton, smut of sugarcane downy mildew of sorghum \& maize are other disease in which edging can be adopted.
2) Eradication of alternate and collator al host. The non-specialized pathogens o having a very wide host range from among weeds, collateral and potunteen host plants cory oven the pathogens from one season to nest and also provide the base for manipulation of inoculum which may reach epidemic condition.
3) Crop Rotation:

In disease control methods, growing of crops in rotation has many benefits such as.
a) Better use of nutrients.
b) weed control in row crops in which ingrowth tillage to eemove weeds would be practiced.
c) Suppression of sol borne pathogens,
d) water economy.
e) (Desirable effect on soil texture with deep rooted crops alternating with shallow toot crops.
4) Manure and fertilizer: \rightarrow
i) Role of manure and Fertilizer is very important in doses or exugeno्यs application of micronutrients Deduce disease severally application of nitrogen more than the normal dose cause new succulents vegetative groonth of the plant and delicious maturity. ii) Pathogen that attack new vegetative growth of. plant are favoured by level of N_{2}.
iii) Pathogens favoured by slow gerwoth of the host and more severe in nitrogen difficiency.
5) $M_{M} x$ cropping:

Simultaneous cultration of mure than one in in same plot. eg wheat + barley, wheat t chick pea.
Due to rede in no. of susceptible plants ion is sufficient spacing between diseased loon g or roots and healliby plants. This pereventes the spread of disease by contact.
6) Sanitation:
i) Field and plant sanitation is the main port of disease management thruigh cultural pracheat This step is essential even if disease or puthogen-free seed has been used. eg. Int wilt disease of banana.
ii) Infected plant debries not only serves as medium for scorvival of pathogen it serves as substrate for their source of sleovival and multiplication and increase the inoculum.
Removal of debries helps in decreasing disease incidence-
7) Hot weather Ploughing:

Hot weather ploughing isthe heat treatment of soil up to captivated depth B also manggemers of top soil. Deep ploughing to tum top soil exposing it to not summer sum is one wert of tilling progipagules of many. pat the Teachers sinature of sol.
8) Sol) amendments:
i) Methods of providing organic source of nutrition to plants include to use of compost, FYM and special riganic amendments. such as oil cakes, al falfa, meal, wood sawdust reembark etc.
ii) Many fungal and nematodes diseases ane also suppressed by soganic amendments.
iii) seganic amendments axe one way of promoting naturally occlering biological control of pathogens in the soil.
9) Time of sowing

Early or delayed sowing of crop enables it escape criticle period of disease incidence. Thus, suitable modification of date of planting in areas where the disease iscommon can reduce losses. Suitable alteration in date of planting in disease like rust of wheat etc. will provide significant relief.
10) Seed rate and Plant density:.
i) Host or plant density in the field is an imp. factor associated with most plant disease. plant spacing created by seed rate or tionspianting offects disease through underground closeness of roots and through aeration of a definite density of the foliage for pathogens, of aerial port.
ii) Dence canopy provides shade, increases humidity under crop delays the drying of 501^{\prime} under the plants prevents aeration and radiation and 102 temperature, these conditions favour most of foliar disease ling dorony mildew late blight etc.
8) Irrigation and drainage: \rightarrow
i) Irrigation water is often a means of transport of moclelums through the field and to different field in the area.
ii) In papaya plantation, angular leaf spot of cotton and many pathogens occurs tronouh irmigation and drainage coates in and outside the field.
B) Biological method of plant disease management.
\rightarrow Bolological method is one of the better safer and cheaper mothod of plant disease management.
II can be utilise by following : means:

1) Use of cross protection.
2) Use of suppressive soil
3) Introduction of never organism
4) Use of hypo virulent strain
5) Use of hyperparasites.
6) Cross Protection: \rightarrow
cross protection implies use of madly pathogenic on non-pathogenic stain of pathogen against it's pathogenic strain since the inducer strain occupy the space in host and trigger host defence system which protect it from the pathogenic strain. ex. Use of mild strain of virus Tristeze for cross protection.
7) Use of suppressive soil $: \rightarrow$

The suppressive soil are those soil which suppress the developement and establishment of the pathogen in soil. The suppressive nessmay be due to PH preserve of perticular day Q presence of large no of antagonists population.
\square
8) Introduction of newer antagonists:

The never antagonists can be introduced in a particular place where it's population very limited.
4) Use of hypovirulentstrain: \rightarrow

Hypovirulence means slebnormal virulence which include all the abnormal states where the pathogenic fitness is reduced because of presence of $\triangle R N A$. in the fungal body. eg. use of diff formulation of trichoderma bacillus sp. etc.
\Rightarrow Use of hyperparasites:
Use of hyperparasite like fri choderma. spp. against phizoctonia and sclerotinum reduces the inoculum potential of the pathogens.
c) chemical methods of plant disease marygement:
\rightarrow Fungicide -
The world "Fungicide' okginated from two lat io wards, us fungus and condo means to kill. Thus the fungicide is any agengiflonemical which has ability to kill the fungus.

* fungistat: some chempab donot kill fungal pathogens, However they simply arrest the growth of the a fungus temporarily. These chemicals called fungistat.
* Antisporulant.
some other chemicals may inhibit the spore production without affecting the gacooth of vegetative hyphae and are called as 'Antisporwant'
* Antibiotic: A chemical substance produced by one organism which in low concentration can inhabit or even kill other mproorganisms.
d) Physical method of plant disease management

1) Hot water treatment (HWT).

The seeds are soaked in cold water at 80-30 ${ }^{\circ} \mathrm{C}$ for 5 hrs to induce the dormant mycelium to grow. Then the seeds so e immersed in hot water at $50-54^{\circ} \mathrm{C}$ for 10 minutes to kill the mycelium. It is very effectively used to eliminate loose smut of wheat.
i") Hot air treatment (HAT).
sugarcane setts are treated with hot an at $50^{\circ} \mathrm{C}$ for 12 hrs to eliminate mosaic virus.
iii) Aerated stem therapy (as T).
sugarcane setts are also exposed to aerated stem at $50^{\circ} \mathrm{C}$ for $b \mathrm{hrs}$ to eliminate mosaic virus.
iv) Moist hot air treatment (MHAT)

This method is effectively used in sugarcane to eliminate grassy shoot disease. Initially the setts are exposed to hot air at $54^{\circ} \mathrm{C}$ ODor 8 hrs then exposed to aerated stem at $50^{\circ} \mathrm{C}$ for 1 hr and finally to moist hot air at $54^{\circ} \mathrm{C}$ for 2 hrs .
\square
v) Solan heat treatment $(6 \mathrm{HT})$.
i) A simplest treatment hasberen device in India to eliminate the pathogen of loose smut of, wheat.
ii) Lehr's solar energy treatment: \rightarrow

The seed are soaked in cold water for 4 hrs in the forenoon on ta bright summer day followed by spreading and drying the seed 6 in host sun for 4 hours in the
forenoon on a bright summer day followed by spreading and drying the seeds in the hot sun for four hours in the afternoon. Thus method more seed a useful for beating large quantities of the seed lots.
vi) Soil solarization:

Sol) Solarization is generally use d for controlling soil borne pathogens like phythium, verticullium, Rhizes Rhizoctonin, fusarium etc.
vil) Stein sterilization :
steam is passed through perforated pipes -at a depth of. 15 cm to sterilize the upper layers." of soil. It is mostly practiced under glass bouse and green house conditions.
viii) Hot air sterilization:

Hot air is also passed through pipelines to sterilize the soils in the nursery areas.
ry) Hot water treatment:
It is done in pot culture studies to kill fungi and nematodes.
x) Refrigen ration:

It is an accepted fact that 1020 temperature at or slightly above the freezing point sheds the growth and activities of all summon pathogens that cause 4 valley of post harvest disease of vegetable and fruits.
xi) Radiation:

Electromagnetic radiation such as Uv right x-rays as wetlas poitriculate radiation hove been stwolied in relation to management of post hardest disease of horticultural crops. controlled post po harvest fungal infection in peaches and tomatoes.
fungicide:
It is an chemical that is capable of killing fungi.
Systemic fungicide:
The fungltoxic compound that controls a fungal pathogen remote from the point of application and that be detected and identified called as systemic fungicide
Eg. corbxin, oxy cosboxin etc.
Nonsyslemic fungicide < contact>
The fungicide which kill or eradicate the fengus at point of application called as hon-sxstemia fungicide eg. Mancozeb, zineb etc.

Fungicides can be broadly grasped based on their.

1) Mode of action.
2) general use
3) chemical composition.
I. Mode of action.
i) Protectant.

As the name suggests protective fungicides are prophylactic in then behaviour, Fungicide, which is effective only if applied pelion to fungal infection is called a protectant eg. zines, sulphur.

Therapeutant: \rightarrow
fungicide that is capable of eradicating a fungus after it has caused infection and thereby causing the plant is called "chemothera peccant"" eg. carboxin. oxycarboxn, antibiotics like Aureofengin, Usually ohemotherapeutants are systemic in actin and affect the deep-seated infection.

Eradicants $\stackrel{\rightarrow}{ } \rightarrow$
Eradicants are those remove pathogec Fungi from an infection court <area of the host around a propagating unit of a kengus in which infection could possibly occure) eg. organic mercurial, lime. swiphus , didine etc. These chemicals eradicate the dormant or e active pathogen from the host. They can zemals effective on or is the host for some time.
II. Based on General Use: \rightarrow

The fungicides can also be classified on their use in managing the disease. seed protectants (preplant): eg. captan, hiram, organomercuries. carbendazim, carboxin etc.
2) Soil Fungicides (Preplant).
eg. chloropicrin, formaldehyde, vapam, dazometete
3) Soil fungicide s< for growing plants> eg. Bordeaux mixture, copper oxychloride, captan PCNB, hiram etc.
4) Foliage and blossom protectants:

Eg: capton, Ferbam, zines, mancozeb,
chlorothalonil etc.
Eradicants.
5) fruit protectants:

Eg: organomexcurials, lime suphure etc.
6) Fruit protectunts:
eg. captan, maneb, carbendazim, mancozeb
7) Tree wound dressers:
eg. Bordeaux paste, chaubattia paste etc.
8) Antibiotics
eg. Actidione, Griseofulvin', streptomycin, srepto mycline etc.
9) General purpose sprays and dust formulations.

III Based on chemical composition: \rightarrow Non syst stemio fungicide

1) Juphur fungicides: \rightarrow
i) Use of sulphur in plant disease control probably the oldest one and canbe classified as inorganic sulphur. Inorgom of elemental
ii) sulphur is used in the form of elemental sulphur or as lime sulphur. Vemental au pe, can be either use widely used in plant later being moral. disease control.
iii) Sup phew fungicides emit rufficient vapors to prevent the grow th of the fungal span at a distance from the area of diposition.
iv) This is an advantages in sulphur fungicide as compared to other fungi toxicants.
v) Sulphur is a contact and protective fungicide normally applied as sprays or as dust.
vi) This used to contrast prodery mildew of fruits vegetables Floupers s tobacco. It is also usa against apple scab and certain rusts leaf blights of field crop and fruits disease.
2) Dithiocarbamates:
is organic comporends of sulphur are now widely used in these days. All such compounds as "carbamate fungicides'

Which are derivatives of dithiocarbampc adid. Dithiocarbomates ane broadly greseped intotwo, based on mechanism of action.

* Monoalkyl Dithiocarbamates \Leftrightarrow

Eg: zineb < Hexathane 75% WP, Dithane $z-78$, Funjeb, Lonocd, Parzate C). maneb (Di thane M22: Manzate $W P$, MEB), mancozeb CDithane $M-45$. Indofil $M-45$, Manzeb), nabam <chembam. Dithane $A-40$, Diathane $D-14$, Parzate liquid). and vapam (vapam, vPM, chemvape, 4-s karba tion, vita fume).

* Dialky 1 Dithiocetrbamates.

Eg, thir an (Thiride 75 WDP, Thiride 750 , Thiram 75%. WDP, Hexathis, Nurmerson, Panoram 75 , Thiram, TMTD, Arasan, Terasan 75, Thylate P amarsol, Thiaram).
Felorbam < coromat, Febam, Ferberk, Femate Fermate D, Fermicide Hexaferb $75 \% 1 / N P$, Karbam black, Ferradoro).
ii) Diseases controlled: \rightarrow
leap spots, blights, anthrachose, zusts, downy mildews etc of many crops fiants.
3) Copper fungicides.

1) The Fungicidal action of copper was mentioned as early as 180% by peevost against wheat bunt disease < Tilletia eorlig) but its large-scale use as a fungicidestarted in 1885 after the discovery of Bordeaux mixture by Millardet in Rance.
ii) Themiature of a copper sulphate and lime was effective in controlling downed mildew of grapevine by by plasm opera víticola. and late blight of potato.
iii) some other sulphate of $\mathrm{Cu} p$-were developed later - Bordeaux paste, chaubatio paste, Burgundy mixture and cheshunt compound. are 4 sed to control diseases.
iv) Preparatn of Cu like cuorychlorde
< Blitox 50, Cupramar 501NP, Fy tolar, Micop-D. 06, Micop $w-50$, Blue copper 50 , cuprovit. cobol, copper bond, copter caprasol canopy, cuprax, Bilmix 4% dust, Mycop, Topgum 50 kki Gupross ride and copper hydroxide.
v) diseases controlled are.

Cu fungicides are protective fungiades - For foliage applicant".
late blight of potato apples scab, during mildew of grapes, damping of seedlings \leqslant disease, stem canker, leaf diseases arrest so, soil borne disease as like as
wilt, collar rot, root rots etc. also used as wound dressers.
4) Mercury Fungicides:

1) They can be grouped as organic \& inorganic compounds.
ii) They are used as seed treatment chemicals against soil borne diseases. They show bacterial property. They ore mane toxic compounds.
iii) Due to then residual toxicity and extreme toxic nature they remain it the plants hence they are banned. In india it is only use for seed treatment of certain comps.

- Inorganic mercury compounds: \rightarrow eg. mercuric chloride and mercuries chloride.
- organpe mercury compounds $8 \rightarrow$

Methyl ethyl mercury chloride. phybely phenyl mercury chloride, ethyl mercury chloride etc.
iv) Disease controlled $: \rightarrow$
manly used for seed realment and treatment of planting material. either y dry wet or slurry method.
5) Heterocyclin nitrogen compounds $: \rightarrow$
i) Mostly used as folrage and froait protectrinin, some compounds are used as a seed dressers.
some commonly used Eingicides are. captan, captapol, glyodin, and Folpet etc.
ii) diseases which are controlled $i \rightarrow$ seed and soil borned disedses in many Pecuits and or mamental and vegetables. captan, glodin and folpet used by spraying on nists, downy dmildew, leof spot, blights, anthracnose etc.
6) Dicarboximide comprends \rightarrow

1) Iprodione (Rovral)
2) vinclozotin < Ronilan, ornalin) are 2 mp Fingicide is this grep. They are broad spectrum and contacts fungicide and cortrol diseases caulsed due to species of Botrytis, sclerotinic, Monilinia, Alternaria, Helminthosposium, Rusarium, Penicillium, Rhizo ctonia etc.
3) argano-phosphoraus rungicides.

Ediph emphos is available $a \leq H i n e s$ an 50% EC and
2% D. It has a speaific action ggainst Py Erculara oryozae (blast), Corticum sesakii and Cochliabolus miyabeamus in nice.

Teacher's Signature

Fungus, somatic structure, types of fungal Tali, fungus tissues, modification of thallus.

Fungus.
def:- Alexopoulas and Mims (1979) defined fungus as eukaryotic/ nucleated spore bearing, achkrophyllaus organism generally produced by sexual 1 sexual method and whose filamentous branched somatic structures is rypically covered by cellwall and cellwall further consist of either cellulose or chitin or glucon so r some other complex organic carbohydrates
Somatic smuctures.

1) Haustoria \leftrightarrows
i) They are nothing but organs for absorption.
ii) It is lateral gest of intercellular or superficial hyphae which will help to absorb food and nutrients from the host.
iii) They are of diff shapes and size ranging From knob like structure to ample lobed branched coiled and they are able to penetrate only in the cell wall and not in the plasma membrane.

Hypha
Haustoma.
Host.
Teacher's Signature
2) Appressoria < apprimere - to press against . i) These ane localized swellings of the tip of germ tube or older hyphae that develop in responce to contact with the host. In simple these are special shactimes for attachment in early stage of infection.
ii) From these a minute infection peg usually grows and enters the epidermal cell of th host fig.
spore.

* Types of fungal tali:

1) Homothallic Engin.

If ingle and female sex organs or both the gametes are produced on the same thallus; they are self fertile/self compatible eg. parodery mildew of Mung-- spharotbe cafulgine.
2) Hetrothallic fungi;

If male and female sex organs or both the gametes are produced on the diff thallus. Hey are self.
sterile or self incompatible eg Rust fungi.

* Fungus Tissues:

1) Plectenchymg KG plekein - tpweave + enchyma $=$ infusion) During certain stages of fungal developement the mycelium becomes organized into loosely ar compact woven tissue as against the loose hyphae ordinarily found in the mycelium. The organized fungal tissue are called plectenchyma.

The plectenchyma is of two types.
a) Prosenchyma.
b) Pseudoparenchyma
a) Prosen chyma: Gr Pros - towards + enchyma-infusion
a) The loosely woven tissue in which the component hyphae with elongated cells lie more or less parallel to one another is called prosenchyma.
\qquad
b). Pseudoparenchyma.

Lar Pseudo-false + parenchyma-a type of plant issue).
The fungal tissue which are loosely packed, in the from of more or less isodiametric or oral cells resembling the parenchyma cells of higher plants are called pseud oparenchyma.
Both prosenchyma and pseudoparenchyma compose various types of vegetative and reproductive stricture stoma is usually made up of prosenchyma anile sclerotium is made of the pseudoparenchy matous Both stomata and sclerotic are somatic structures of fungi.

AP Nanolism or Thallus.

* Bacterial cell structure

Bacterial cell structure.
\rightarrow The bacterial cell is surrounded by a cell wall composed of peptrdoglycan consist of chain of alternating N-acetyl muramic acid and terapetide and pentaglycine units.
ii) The cell wall allows the inward passage of waste matter and digestive errymes.
iii) All the material mside the cell wall constitute the protoplast.
i) The protoplast consist of a cytoplasmic or protoplast membrane, which determines the degree of selective premeablility of varia substances moo and out of the cell.
v) The cytoplasmic membrane of bacteria recembles those of eukaryotes but also contains respiratory and other enzymes located in the bacteria.
vi) The chromosomal DNA make sup the main body of genetic material of the bacterium and appears as a spherical, ellipgoidal a umb-bell or y-shaped body in the igtoplasm but without any membrane.
\qquad

* Flagella
i) In bacteria flagella are the organs of locomotion.
ii) They are very dilicate and fragile and cultures are to be bandied carefully for then straining.
iii) The flagella vary from $10^{-12} \mathrm{~nm}$ is width which is similar than wavelength of light. therefore cannot be sere by ordinary staining.
* Parts of Flagellum.
- Filament:

It is outermost region of flagellum ancl 13 helical composed of Flagellin withal molecular weight of $30,000-40,000$ and is syothesized in the cell, which moves to the hallow core of the flagellum to the tip.

- Flagellin is protelnwith 14 amino acid and is characterised by higher content of aromatic amino acid and absence of cysteine in many cone.
- Hook: Filament is attached to hook which is wider than the flagellum. Trisirs 45 nm wide and made up of different type of proteins. The hook of gram (4) re bacterium is longer than that of the gram Eve bacterium.
* Basal body :

The third port basal body consist of small central no which is inserted into ? system of tings. The gram Give and gram $Q v o$ bacteria are different in the number of rings. The miner pair of inge $<s a_{n} i_{n}$ are mop ombeded in cell membrane and are framed in both gram positive and gram negative bacteria. I L and P rings are formed only in gram Θ re bacteria. Sanding. rings are important for moment of fagin.

* P Pi
\rightarrow In some bacteria small hair like structures ave also present which are called pili.
\rightarrow These are shorter than the Flagella a and are thicker (3-15nm indiameterl The term fimbfriae is sometime also urey for pili but the term pili reserved firn those which are involved in conjugation.
\rightarrow They are made up of protein sub-units pillin of molecular weight of 70,000 .
\rightarrow It consist of d helically collied Fibre with a central hole of 2 nm in diameter.
\rightarrow Fimbria maybe involved in attachment whenever there is infection . Both Flagella and pili originate from cell membrane and extend sulfwend through the cell wall.

Teacher's Signature \qquad

- Reproduction:
sacterum multiply at a phenomena at tar by the process of binary on fission or fission.

As the gytopiasm and cell wall undergo division into two, the nuclear material is organized into a circular chromosome like wiruptuse which whmately duplicates itself and gets distepbuted equally into 2 newly formed cella. similarly, plasmids also depilate and come into. 2 daughter cells.
\rightarrow The duplication occur rapidly once elegy 20 minutes.
I As a result the bacterium like Eschersa cole, starting from bactenum may produce 1 million becterad in 10 hr.
\rightarrow However this no. is not reached because the gradual limitation "of nutrients and toxic metabolites. SHill what is achieved normally is pnemomenomal.
\rightarrow Such polificacy in multiplication must be of great advantage both in survival of bacterial pathogen and also for successive plant infections.

* Fungi and their characteristics *
- Fungi:
fungi are the eukaryotic spore beatty. chlorophyllus and unicellular on multicelki? ? organism which is reproduce by asexual oi ie sexually.
- Characteristics of fungi.

1) Fungir are eukaryotic.
2) They reproduce both by sexual and asempl means.
3) They or their nukition is heterotropic. They may be a) obligate parasite ar b) saprophyte
4) Their habitat ane damping places and dead or decking matter. They ane soil heron
5) Their life cycle are both simple \& complex.
6) They are Acblorophillcus ie lack chioraphy.
7) They are unisucellutar on multicellular.
8) They are commopilitian ie distributed exam were.
9) Their cell wall is made up of chitin.
10) They may be obligate parasite or saprophytes.
11) They have symbiotic relationship with other organisms and they are froe living.

- Thallus: fungal body is called as thallus.
- septa: \rightarrow i) aseptate /I ii) septate A
- spore \because unit of reproduction.
\therefore my ellice \Rightarrow groups of hyphae.
- hyphae $: \rightarrow$ Thread like structure bins signature

Asexual Reproduction.
i) It occures through internally or ertempally produced spores which also act as agent: of dissemination, survival and infection.
ii) In straminopila (Oomyeota) and some, fungi 〈zygomycota〉, asexual spire are produced endogenously inside a sacalite structure called sporangium and are released either by supture of sporangial wall or through pore of opening in it's coll.
They are either motile with one or two flagella called zoospores. is mon-motile apanuspores.
iii) Sporangia are formed on specialized hyphal branches called sporangiophores.
10) Candia are another type/ of asesuyal spore which are cut of terminally or laterally from specialized hyphal branches called condioshopes.
v) The locomot or appendages on flagella of zoospores ane of too types ie whiplash and tinsel.
The whiplash \rightarrow much thinner at HP. Tinsel (Frond in straminopila) [Oomycota]] have large no. of. small hair like outgrowths called mastigoonemes ar fila flimmers on their entire length.
II. Sexual Reproduction:
sexual Reproduction involves

* Plasmogamy: fusion between two sexual cells
* Karyogamy: Fusion of the nuclei. It results in the formation of a diploid nucleus, which immediately os later undergoes meiosis to form 4 haploid nuclei.
fungi achieve plosmogamy by a variety of methods
i) Gameto gamy
ii) Gamet angiogamy,
iii) Sperm ariz action
iv) Somatugamy.

1) Gametogamy:
\rightarrow It is a fusion or copulation beth gametes.
\rightarrow Gametes are naked wall-less sexcells which copulate to form a zygote.
If the two gametes are similar in size, they are called isogamy.
\rightarrow Copulation beth two dissimilar gametes, one smaller (male) and other bigger (female) is called anisogamy.
\rightarrow The fusion beth motile male gamete and non-motile female gamete (oosphere or egg) lying in the oogonium is called helergamy.
ii) Gametangiogamy: \rightarrow

It B fusion beth gametangia con the sep organ) when gametangia are similar io shape and size, these are called isogametangia and are designated as (4) and © gametangia rather than mate and female.
\rightarrow When the gametangia are diff in shape and size they are called heterogametargic
\rightarrow The male 13 usually smaller and cup Ac shaped female is glower.
\rightarrow zygospore: Erosion beth two similar gamete \rightarrow The zygote formed by the fusion between morphologically distinct gametangia is called oospore and process orgamy.
\rightarrow The plasmogamy beth them is called gametangia copulation go contanct eg. Mucor, Rhizophidium.
iii) Spermatization:
\rightarrow It occures in Ascomycota and Basidiomycota.
\rightarrow spermatic (sing. spermatium) minute male gametes are formed like candia on purring.
\rightarrow The spermatium when comes in contact with the feral gametangium release themafe nudeus into the female gametangia through a pore.

Teacher's Signature \qquad
iv) Somatogangy:
\rightarrow In this sex organs are not formed and somatic cells are such as gametangia and fuse together. eg. Agarious.
\rightarrow somatogamy 'occure beth cells of same hyphae os beth cells of the diff e tali.

* * * General dougeloastics and claserficancos of viral plant pathogens
* Churactessistres of viruses which serauctie then from other cures of plant poltroons are.
- Indy are acellalon
- they are dub microscopic and intracellewa.
\therefore They lack lipid membrane system arg energy production.
\rightarrow They case host machinery fo the i repircape
* Structure of viruses.
\rightarrow Viron is a technical form used fir the virus particle. A pron consists of nuder acid surrounded by a protein coat.
\rightarrow The nucleic arid is called 'nude void' which may be either/de-ory ribonucleic acid DNA or ribonucleic acid RNA but never both, and forms the genome.
\rightarrow The protein coat is called caspid. It consists of many subunits which are similar and occasionally dissimilar and these subunits are called capsomers. The combined genome and the capsid are called "nucleocapsid"
\qquad

In many gre of viecuses theme is an additional protein layer beth the capsid and the nudeoid. This is called "virus one"

Nuclebid

- The nudeald coucleic acid component) is located internally within a protein coat.
- Only one type of nucleic acid, 10 either RNA or DNA is find in a virus.
- Higher percentage of nucleic acid is associated with larger DNA viruses like bacteriophages. while kero content is Found in animal viruses.
- Most of the viruse contain RNA, with exceptions like couliflower mosaic virus.
* capsid

The capsid is a protein coat surrounding the nudeid and the following functions.
\rightarrow Protects nudeic acid from unfavourable external environment.
\rightarrow It facilates nudeic acid Pentgy into the host cell.
\rightarrow It is antigenic, and protein coat shows a complex structure and provide shape to the virus particles.
\rightarrow It inleracts with the vector for specific, transmission,
\qquad

Morphology of viruses
Nouses are differentiated ale to shape and size.
i) long aten (11 gid pod of fleskices threads) ii) spherical (isometric as polyhedral). iii) cylindrical (bacillus -lik erode).

1)

2.)

$$
\left[\begin{array}{lll}
\infty & & \\
0 & 0 & 0 \\
8 & 0 & 0
\end{array}\right]
$$

3).

Some elongated uruses axe rigid rods abl $15 \times 500 \mathrm{~nm}$ in size but most appear as long thin flexible threads that are usually $1-10 \mathrm{hm}$ wide and $480-2000 \mathrm{~nm}$ in length.
Rhabdovruses are shot t basillus -like cylindrical rods approximately there to five times as long as they are wide. (52-75 $\times 300-380 \mathrm{~nm}$ in size). Most spherical viruses arse actually polyhedral ranging in diamelen about 17 nm (Tobacco boosts satellite virus). to 60 nm (coorend tumour virus.)
\qquad

Tomato spotted wilt virus is sumizended by a membrane and has flexible spherical shape about too nm in diameter

* Composition and shucture of viral proteins. \rightarrow Viral proteins like all proteins consist of amino acid.
\rightarrow the sequence of amino acid with in a protein, which is encoded by the sequence of nucleotides in the genetic material. determines the nature and properties of the protein.
* composition and smucture of $v i^{2}$ al sudeic and.
\rightarrow Most plant vIrUses consist of RNA but now, a large number of mu viruses have also been shawn to contain ONA at its genome.
\rightarrow Roth RNA and DNA are long chain-like molecules consisting of hundreds of or most of them thousands of units called nucleotides.
\rightarrow Each nucleotide consist of ring companies called the base attached to a five. carbon sugar (ribose in RNA or deoxyribose in DNA) which is tern is attached to phosphoric acid.
\qquad
* Transmission of plant
viruses. *.
\rightarrow viruses cannot penetrate the intact plant cuticle and the cellulose celleall plants have a bar vier infection.
\rightarrow This problem is overcome either by avoiding the need to penetrate the intact outer surface. (eg) in seed transmission or by vegetative propagation. or by penetration though a wound in the surface layers. such as is mechanical inoculation and transmission by insects.
\rightarrow There is considerable specificity in the mechanism by which any one virus is naturally transmitted.

1) Transmission via Plant material): \rightarrow
a) Mechanical Transmission:
i) Mechanical transmission involves the introduction of infective viruses on viral RNA into a wound on the plant's surface.
ii) When virus establishes itself success felly in the cell, infection occurred.
iii) This form of transmission occurs naturally with a feed viruses such as Tobacco mosaic virus. (TMU) and potato virus x (PuP) that are very stable and reach high concentration in plant.
2) Mechanical inoculation 13 usually done by reianding up in pealed leafraane
tissue in a buffer visually a phosphate buffer that contains additives that control then rubbing the extract gently on the leaves of the recipient plant.
v) The gent ie applicat' wounds the leaf surface with ret causing cell death.
b) Seed Transmission:

About one seventh of the known plant virus: are transmitted thrigh the seed of at least one their infected host plants. virus may persist in seed for long periods so commercial distribution of a seedborne virus over long distances may occurs. examples: pea seeds bourne mosaic virus.
c) Pollen Transmission:
some viruses are transmitted from plant to plant via pollen. As with seed transmission two mechanisms appear to operate in pollen transmission gametic in lection of the embryo and direct infection of the mother plant.
a) vegetative propagation:

Vegetative propagation is an important practice but it is also tenifion unfiontunately, a very effective method for perpetrating and spreading viruses. economically, imp. viruses spread systemically through most vegetative parts of the plant.
e) Grafting:

Grafting is essentially a form of vegetative. propagation in which part of one plant grows on the roots. of another individual where either the rootstock or the individual plant form which the scion is taken is infected systemically with virus the grafted plant as whole will become infected if both plants in the graft ang/susceptible.
2) Transmission by invertebrates:

Many plant viruses are transmitted from plant to plant in nature by invertebrate vectors. membranes of the insecta and arachinida classes of. the Arthopoda and the Dorylaimida order, of the Nematode. Six of the

Teacher's Signature

order contains insects that feed by chiewing. The Homopterd feed by sucking sap from plants and ane numerically common vectors at plant viruses are aphids, leaf hoppers and whitefly. 7 of the 29 orders in the living insecto feeding on living green plants ane vectors of plant viruses and virus transmitting order are orthopter, coleoptera, Lepidoptery, Dipbera, Thy sandpera, Hemiptera.
8) Fungal Transmission of viruses: Several viruses have been shown to be transmitted by Soilinhabiting fungi: The known vectors are members of the talas plasmodiophoromyceles in the division Myxomy lota of in the class chytridiomycelss in the division Eumycota. species in the chytrid genus al pidium transmit viruses with isometric particles. While species in two plasmodiophorus genera, polymyxa and spongospora transmit rod-shaped or filamentous viruses.

Characlexistics of Baclemix:

1) It is a mimorcopic in nature.
2) Unicfllular s reproduction by sexually or asexurally.
3) It 15 prokaryotic.
4) They are motile with having. Flagella or flagellum.
5) Varty their shape-spherical rodshaped \& helicat.
6) Asexually reprodation of bactoria is either by hinary fission orby budding.
7) Bacterio reproduce soxulally by congugation. transformation, as transduction.
8) Bacleria useful in scrsaing of milk and ano harmful which cousoe dizease in plants and humens f etrimaks also.
9) Good example of broteria which are beneficial to aggiculture are a) Rnizobium \rightarrow which fix atmpspheric N on legume rost noodules symbiotically
b) Azotabacter: Fix the atmos. A wimat the arhelp of any plant iso it is a asymbiolic

yo) Devord withoret chlomphyll.
\qquad
 Ballses of Plant Diseases it

Abiotic (Inanimate) factors:
They induce mainly the deficiency or excess f nutrients light, moisture aceration, abolonality in soil condition atmospnegic impurites etc. Examples are Black tip of mango Clue to son toxicity), knaira disease of eice Clue to zn difficiency), whrptall of cow it lowers <MO deficiency) hollow and black beat of potato <due to exert excessive accumulations of con in storage) bitter pit of apple live to en efficiency $>$.
*) Mesobiotic causes:
These gee the disease incitants which ore neither living nor nonliving. They are considered to be on the thee should of life. They are
D viruses: They are in fections agents made up of one type of nucleic acid $\langle R N A$ or DNA) ienclosed in a protein coat. Examples of viral diseases of plants ate: potato leaf owl, leaf cur) of tomato and chillies ard onosaic disease of many parts.

1) Viroids: They are naked infectious strands of nucleic acid. They cause disease $1, k \in$ potato spindle tuber, citrus exocoetic, Chyeysan themum stunt, cadang cadang of coconut palm, star crack of apple etc.

Biotic Animate >cause:
This category include the pathogens whin, are animate or living or cellular argaini;
\rightarrow Prokaryotes like bacteria which ace They are. unicellular prokaryotic microorganisms lacking true nucleus. Example of disen: caused by true bacteria ate boson. rot. or wilt of potato, soft rot of potato and regetables. cite us carsker.
phytoplasma are wall less prokaryotes and cause disease like peach. x.
ii) Fastidious bacterium, xylella fastidios? cause almond leaf scorch pierce's - disease of grapevine.

- Eukaryotes are the organisms with the nus
i) Fungi: \rightarrow potato wok, powdery mildew., rugs smuts, qed rot of sugarcane <nearly 80% of plant disease are caused by fungi
ii) Sta minopiles $\% 0$ mycetes \rangle : Downy mildews, late blight of potato, white rust of crucifers damping of f etc.
* History of Plant Pathology India. *.

Dosing $1850-1875 \mathrm{AD} \cdot$ aunnigngham and A.
Barclay started identification of fungi in India. canning ham made special study of rust 5 smuts

1) K.R. kietikar: was the First Istrian scientist who - collected and indentifiod the fungi in tho country.
2) E.J. Bulter:who is is know as the father of plant Pathology in India. Initiated an exhaustive study of fungi and disease. caused by them in 1901 at Imperial Agricultural Research Institute at Pusa <Binary.
He made a scientific study of mostly fungal plant
3) diseases known in India at that time. He also studied. For first time plant disease known in India of that time. The diseases studied by him for the first time include wilt of cotton, pigeon pea, different diseases of rice, toddy pain sugarcane potato and rusts of cereals.
He wrote a monograph on Pythraceciis and Allied fungi and a classics text book: Fang and diseases in plants in ingle.
B) J.F.Dastue $: \rightarrow\langle 1886-1971\rangle$,
a colleague of butler, was the Ist indian plant pathologist who is crealited with a detailed studres of fungi and diseases in plants. He also studied gene pbytophthorn and disease caused by it in castor and potato. He 13 known for the establishment Col phytophthora parasitica from castor.
4) G.S.kulkarni. - published exhaustive information on downy mildew and smuts of sugar cane and pearl millet.
5) B.B. Madbukars - started work on cont 8_{0} of - cotton with through varietal resistance.
6) Dr. K.c. Meta of Agra college investigated the life cycle of cereal rusts in India during. the first half of $20^{\text {th }}$ century.
7) DrR.Prasada : trained by Dr K.C. Mehata continued the work on rust and added to the knowledge of linseed rust.
8) Luthra and sat tor (1953) developed the: solar heart treatment of wheat seed for the control of loose smut. SN Dasgup $\neq a$ carrided out exhaustive studies on black tip of mango.

Teacher's Signature
$\xrightarrow{1}$
9) T.S. Sadasivan - wo ked out the mechanism of wilting in cotton due to fusarium oxysporum f. sp. v asin fectum.
10) M.K. Pate), U.P. Bride and G-Rangascoams pioneered the work on bacterial plant pathogens in India..
4) M.J. Three malachercianducted exhaustive studies on rusts and sumps, and developed a number of antibiotics for controlling pant diseases in India.

Notable control buttons included the works of B.L chong or sugarcane disease and A gninothrudu in tea disease, R.K Agrawala on apple disease and G.S. saharan on allseed plant disease to name a few.

Definations and concepts:

1) Disease : A/C to horsfall and diamond <19 ss disease may be defined as malfunctioning process that is caused by continuous 1 equation by a pathogen and for environment -a) faction eescelting in'some suffering producing systems.
2) Disorder: The disease caused, by the deflatinay of. nutrients or unfavourable environmental ore sometimes formed as disorder or physiological disorders.
3) Pathogen: It is the agent responcible for inciting 'pathos' ie ailment or damage.
4) Parasite: These ore the organisms which degins the ford materials needled for their geounth from other living organisms. All the pathogens Care parasites but all the parasites are not-pathogens. As some of the parasites live on their hosts without causing any damage to them as symbiotic relationships. eq Rhizobium bacterium in legume roots, my corrtizae. and lichens.
\qquad
5) Bioteophs: - Ale the organisms which eogordloss of the ease which on they can be cultivated on cetificial media obtain their food from living tissues only in which they complete their life cycle). They were earlier also called obligate parasites. eg. rusts, smelts, panodery more of nutation. mildews etc. 1
' ic
Gaprophytes/saprobes - are the organisms which derive
their nutrition from the dead organic matter. some parasites and saprophytes mayhare the faculty ar (ability) to change their model of - nutrition.
a) Facultative saprophytes: are ordinarily parasites which can gers and eeproduce on dead. organic matter under certain circumstances. They are also called hemibiomophs which attack the living tissue in such a way as biotouphs but continue to gene and reproduce offer the tissue dead.
6) Necrotroph: A parasite is added hecratroph when it kills the host tissue in advance of penetration and: Then lives saprophytically, eg. sclerotioum rolfsil and pythium species

Mrwande.

Similar to necrotropns are fayal tative parogin which laves as saprophytes but under favourable conditions they can attack ling plants and become parasites. The eecrotropns ale also known as perthotrophs or perthot phyles.
-1) Pathogenicity is the ability of a pathogen to cause disease under a given set of environmental condo ${ }^{p}$.
10) Pathogenesis is the chain of events that leads to derelopement of a disease ion the host-
1)) Pariositism is a phenomenon by which a plant parasite becomes intimately associated with the plant; it trows nutrition and multiplies and grows at the expense of the plant lost.
12) Virulence: It is a measure or degree of pathogenicity of an isolate or race of the pathogen. The term aggressiveness is often used to describe the capacity of a pathogen to invade s grow in the host plant and to eeproduce on Dr in it.
18) Immunity: Immunity of a plant against a disease is absolute quality. It denotes the Freedom of plant from disease, when the pathogen cannot establish parasitic relationship with the host. High resistance and lois suspectibility approach ingmunity.
14) Drease resistance: It is the ability of an organism to overcome completely or in some degree a the effect of a pathogen or other damaging factor, whereas susceptibility in the inability of the plant to resist the effect of the pathogen of other damaging factor.
15) Hypersensitivity is the extreme degree of susceptibility in which there is rapid death of the sets in the vicinity of the invaliding pathogen. It halts the farther progress of the pathogen. Thus hypersensitivity is a sign of very high eesistarice approaching immunity.
16) Infection: It is the establisment of the parasitic relationship between the pathogen and host following entry of penetration.
17) Incubation period: is the time elapsing between penetration and completion of infection ie development of the disease symptoms.

Invasion and colonization: is the granth and multiplication of the pathogen through the tissue of the host varying extent.

Classification of plant disenso.

* Based ob plant part affected.

1) Localised. \rightarrow if they affected only specific organ or poet of the plant.
a) systemic $: \rightarrow$ if entire plant is affected or They can be classified ar s root diseases. stem diseases i Foliage Foliar diseases enc

* Based on prepetudtion and spread is i) soil borne: when the pathogen perpetuates through the agen of of sal.
a) Seed borne: When the pathogen perpetuates \therefore tHrough seed <or any propagation material

3) Ais borne: when they ate disseminated by wind egg. rusts and powdery mildews.

- Disease are classified as rust, smuts, prudery mildews, downy mildews root cots wilts, blights cankers, feluits rots, leaf spots, etc. In all these examples, the disease are named after the most conspicuous symptom of the disease appearing on the host surface.
* Based on the host plants affected.

They can be classified as cereal drop diseases, - Forage crop diseases, flax diseases millet diseases, plantation crop diseases. Prut crop diseases, vegetable crop disease, - Flowering plant diseases etc.

* Based on major causes:-

They can be.classifred as fungal disease, viral disease, mycoplasmal diseases etc. .

* Based on Infection Process.

1) Infectious: All the diseases caused by animate causes, viruses and virolids can be transmitted from infected host plants to the healthy plants and are called infectious.
2) Non-infectious: Non-infectious disease cannot be transmitted to a heal thy plant. Also"' reffered as non-parasitic disorder, or
simply physiological disorder and are incing by abiotic or inanimate causes like nutrient r difficiency or excess or unfavourable weather conditions of soil and air or injurious mechanical influence.

* Classification of Animate disease in relation. to their occurance.

1) Endemic diseases: which are more or less constantly present from year to year in a moderate. to severe form in a perticulas geographeafeegion ie country; district or location.
2) Epidemic/epiphytotic disease: which occurs widely but periodically particularly in a severe Form. They might be beccuying in a to locality every year but assume severe form only on occasion due to the Favorable environmental cold ${ }^{n}$ occurring in some years.
3) Sporadic disease: occure at irregular intervals and locations and in restively few. instances:.
4) Dandicmic diseases: A disease may be endemic in pone region and epidemic in another when epiphytotic become prevalent through act a county continent or the word the diseaneners spiny be toned as pandemic.
